• Python
  • Advanced Spam Classification System – Dual Approach Implementation

    🚀 Advanced Spam Classification System – Dual Approach Implementation

    Spam Classification License AI Engine Performance

    Comprehensive spam detection system implementing both traditional machine learning and modern vector database approaches

    🚀 Quick Start • 📖 Documentation • 🛠️ Technologies • 📊 Performance

    🌟 Key Features

    🤖 Dual Classification Approaches

    • Naive Bayes Implementation – Traditional probabilistic classification with 86.74% accuracy
    • Vector Database System – Modern FAISS-based similarity search with 98.57% accuracy
    • Comparative Analysis – Side-by-side performance evaluation of both approaches
    • Real-time Processing – Interactive classification with instant results

    📊 Advanced Text Processing

    • NLTK Integration – Comprehensive natural language processing pipeline
    • Multilingual Support – E5-base embeddings for cross-language compatibility
    • Smart Preprocessing – Tokenization, stemming, stopword removal, and normalization
    • Feature Engineering – Bag-of-words and dense vector representations

    🎯 Production-Ready Features

    • GPU Optimization – CUDA-optimized for high-performance computing
    • Memory Management – Efficient batch processing and memory optimization
    • Error Handling – Robust fallback mechanisms and graceful degradation
    • Modular Design – Clean separation of concerns and reusable components

    🛠️ Technologies

    🐍 Python Stack

    Python PyTorch Scikit-learn Pandas

    • Python 3.8+ – Core programming language
    • PyTorch – Deep learning framework for embeddings
    • Scikit-learn – Machine learning algorithms and utilities
    • Pandas – Data manipulation and analysis
    • NLTK – Natural language processing toolkit

    🤖 AI & ML

    Hugging Face FAISS Transformers

    • HuggingFace Transformers – Pre-trained language models
    • Multilingual E5-base – Cross-lingual sentence embeddings
    • FAISS – Facebook AI Similarity Search for vector operations
    • Naive Bayes – Probabilistic classification algorithm
    • NLTK – Natural language processing and text preprocessing

    🎯 Problem Statement

    Develop a comprehensive spam classification system that demonstrates both traditional machine learning approaches (Naive Bayes) and modern vector database techniques (FAISS + embeddings). The system should achieve high accuracy while providing insights into the comparative performance of different classification methodologies.

    🔬 Methodology

    📊 System Architecture

    1. Data Processing Pipeline

      • CSV data loading and preprocessing
      • Text normalization and cleaning
      • Feature extraction and vectorization
      • Train/validation/test split with stratification
    2. Naive Bayes Implementation

      • Bag-of-words feature extraction
      • Gaussian Naive Bayes classifier
      • NLTK-based text preprocessing
      • Traditional ML evaluation metrics
    3. Vector Database System

      • Multilingual E5-base embeddings
      • FAISS index construction and management
      • K-nearest neighbors classification
      • Similarity-based spam detection
    4. Comparative Analysis

      • Performance metrics comparison
      • Processing time analysis
      • Accuracy and precision evaluation
      • Real-time classification testing

    📊 Performance

    🏆 Classification Accuracy

    Method Validation Accuracy Test Accuracy Processing Time
    Naive Bayes 87.17% 86.74% ~2s
    Vector DB (k=1) 98.57% ~5s
    Vector DB (k=3) 98.57% ~7s

    🎯 Key Performance Insights

    • Vector Database Approach achieves 11.83% higher accuracy than Naive Bayes
    • FAISS Implementation provides superior performance for similarity-based classification
    • Multilingual Embeddings enable cross-lingual spam detection capabilities
    • Scalable Architecture supports real-time classification with minimal latency

    🖼️ Performance Visualization

    Performance comparison

    Figure 2. Comparative performance analysis of Naive Bayes vs Vector Database approaches.

    Technical Analysis

    1. Objective — This analysis demonstrates the effectiveness of modern vector database approaches compared to traditional machine learning methods for spam classification tasks.

    2. Experimental Setup — Both systems were evaluated on the same dataset with identical train/test splits, ensuring fair comparison of methodologies.

    3. Key Findings —

    • Vector Database approach significantly outperforms Naive Bayes in accuracy
    • Embedding-based classification provides better semantic understanding
    • FAISS implementation offers scalable similarity search capabilities
    1. Performance Optimization —
    • Batch processing for embedding generation
    • GPU acceleration for transformer models
    • Efficient FAISS indexing for fast retrieval
    • Memory optimization for large-scale processing

    🚀 Quick Start

    📋 System Requirements

    • Python 3.8+ with pip
    • CUDA-compatible GPU (optional, for faster processing)
    • 4GB+ RAM (8GB+ recommended)
    • 2GB+ Storage (for models and data)

    ⚡ Automated Setup

    # 1. Clone repository
    git clone <repository-url>
    cd spam-classification-system
    
    # 2. Create a virtual environment
    python -m venv venv
    
    # Windows
    venv\Scripts\activate
    # macOS/Linux  
    source venv/bin/activate
    
    # 3. Install dependencies
    pip install pandas scikit-learn nltk gdown transformers torch faiss-cpu tqdm

    🔧 Configuration

    Model Selection

    Use Case Recommended Method Rationale
    High Accuracy Required Vector Database (k=1) 98.57% accuracy, semantic understanding
    Fast Processing Naive Bayes 86.74% accuracy, ~2s processing time
    Balanced Performance Vector Database (k=3) 98.57% accuracy, robust classification
    Resource Constrained Naive Bayes Lower memory usage, CPU-only processing

    Advanced Configuration

    # Vector Database Configuration
    VECTOR_CONFIG = {
        "model_name": "intfloat/multilingual-e5-base",
        "embedding_dim": 768,
        "batch_size": 32,
        "k_neighbors": 1,
        "similarity_threshold": 0.7
    }
    
    # Naive Bayes Configuration
    NB_CONFIG = {
        "test_size": 0.1,
        "random_state": 42,
        "stratify": True,
        "preprocessing": "nltk"
    }

    🏃‍♂️ Run the application

    # Run the complete spam classification system
    python app.py

    What it does:

    • 📥 Downloads and processes spam dataset
    • 🔄 Implements both Naive Bayes and Vector DB approaches
    • 🧮 Generates embeddings and builds FAISS index
    • 🤖 Performs comparative classification analysis
    • 📊 Provides detailed performance metrics

    🧪 Testing

    # Test individual components
    python -c "import pandas as pd; print('Data processing OK')"
    python -c "import torch; print('PyTorch OK')"
    python -c "import faiss; print('FAISS OK')"
    
    # Test model loading
    python -c "from transformers import AutoModel; print('Transformers OK')"
    
    # Test classification pipeline
    python -c "from sklearn.naive_bayes import GaussianNB; print('Scikit-learn OK')"

    📦 Project Structure

    spam-classification-system/
    ├── 📄 app.py                    # Main application script
    ├── 📊 aio_project_2_2.ipynb     # Jupyter notebook with detailed analysis
    ├── 📋 requirements.txt           # Python dependencies
    ├── 📁 data/                      # Dataset directory
    │   └── 2cls_spam_text_cls.csv   # Spam classification dataset
    ├── 📁 models/                    # Pre-trained models cache
    └── 📖 README.md                 # Project documentation
    

    🚀 Performance Benchmarks

    ⚡ Speed Metrics

    • Data Loading: ~1s for 5,572 messages
    • Naive Bayes Training: ~2s for complete pipeline
    • Embedding Generation: ~15s for full dataset
    • FAISS Index Building: ~1s for 5,014 vectors
    • Real-time Classification: ~0.1s per message

    💾 Memory Usage

    • Base System: ~500MB RAM
    • Model Loading: ~1GB RAM (E5-base)
    • FAISS Index: ~50MB for 5K vectors
    • Peak RAM: ~2GB during embedding generation

    🔒 Security & Privacy

    🛡️ Data Protection

    • Local Processing: All data processed locally, no external API calls
    • Temporary Storage: Models cached locally for faster subsequent runs
    • No Data Persistence: No permanent storage of user messages
    • Open Source: Full transparency in implementation

    🔐 Best Practices

    • Use virtual environments for isolation
    • Regular dependency updates for security
    • Monitor resource usage during processing
    • Implement proper error handling

    🛠️ Troubleshooting

    ❓ Common Issues

    1. CUDA Out of Memory

    # Solutions:
    - Use CPU-only processing: device = torch.device("cpu")
    - Reduce batch size in embedding generation
    - Clear GPU cache: torch.cuda.empty_cache()

    2. NLTK Data Download Error

    # Solutions:  
    - Manual download: python -c "import nltk; nltk.download('all')"
    - Check internet connection
    - Use offline NLTK data

    3. FAISS Installation Issues

    # Solutions:
    - Install CPU version: pip install faiss-cpu
    - For GPU: pip install faiss-gpu
    - Check system compatibility

    🔧 Performance Tuning

    1. Memory Optimization:

      • Use smaller batch sizes for embedding generation
      • Implement gradient checkpointing
      • Clear unused variables and tensors
    2. Speed Optimization:

      • Enable GPU acceleration when available
      • Use FAISS GPU indices for large datasets
      • Implement caching for repeated operations
    3. Accuracy Optimization:

      • Fine-tune embedding models on domain data
      • Experiment with different k values for KNN
      • Implement ensemble methods

    🤝 Contributions

    We welcome contributions!

    📝 Development Workflow

    1. Fork the repository
    2. Create a feature branch: git checkout -b feature/amazing-feature
    3. Commit changes: git commit -m 'Add amazing feature'
    4. Push the branch: git push origin feature/amazing-feature
    5. Open a Pull Request

    🎨 Code Standards

    • Python: PEP 8 + Black formatter
    • Commits: Conventional Commits
    • Documentation: Docstrings for all functions
    • Testing: Unit tests for critical functions

    📚 Technical Documentation

    🔧 API Reference

    # Naive Bayes Classification
    from sklearn.naive_bayes import GaussianNB
    from sklearn.preprocessing import LabelEncoder
    
    # Initialize classifier
    model = GaussianNB()
    label_encoder = LabelEncoder()
    
    # Train and predict
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    # Vector Database Classification
    import faiss
    from transformers import AutoModel, AutoTokenizer
    
    # Initialize embedding model
    model = AutoModel.from_pretrained("intfloat/multilingual-e5-base")
    tokenizer = AutoTokenizer.from_pretrained("intfloat/multilingual-e5-base")
    
    # Build FAISS index
    index = faiss.IndexFlatIP(embedding_dim)
    index.add(embeddings.astype("float32"))

    📖 Advanced Usage

    # Custom embedding strategy
    def custom_embedding_pipeline(texts):
        # Implement custom embedding logic
        pass
    
    # Integration with other frameworks
    def integrate_with_streamlit():
        # Web interface integration
        pass

    📄 License

    MIT License – see LICENSE for details.

    🙏 Acknowledgments


    Built with ❤️ for AI Engineers

    GitHub Stars GitHub Forks

    ⭐ Star this repo if you find it useful!

    Github: https://github.com/Enigmask22/Advanced-Spam-Classification-System-2.2

    Để lại một bình luận

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    7 mins